
www.manaraa.com

Information Systems Education Journal (ISEDJ) 17 (3)

ISSN: 1545-679X June 2019

©2019 ISCAP (Information Systems and Computing Academic Professionals) Page 20
https://isedj.org/; http://iscap.info

Using Codecademy Interactive Lessons

as an Instructional Supplement
in a Python Programming Course

Jason H. Sharp
jsharp@tarleton.edu

Marketing and Computer Information Systems
Tarleton State University

Stephenville, TX 76402

Abstract

With the recent renewed interest in programming, online learning environments like Codecademy have
become quite popular, boasting some 25 million members worldwide. The purpose of this paper is to
describe the author’s experience using Codecademy Interactive Lessons as an instructional supplement
in an introductory Python programming course. The paper provides a brief background of the literature,
a description of how the author implemented the interactive lessons, a discussion of the positives and
negatives, the extent to which the interactive lessons met the course skill outcomes, and conclusions

about the overall experience. In sum, the Codecademy Interactive Lessons fulfilled 3 of the 6 course
skill outcomes and overall, the positives outweighed the negatives.

Keywords: Codecademy, Python programming, Interactive lessons, Online learning environments

1. INTRODUCTION

“Teaching the world how to code” ~ Codecademy

Codecademy provides free, online, interactive
lessons for a variety of programming topics.
Founded in 2011 by Zach Sims and Ryan Bubinski

(Codecademy, n.d.), Codecademy purports to
have 25 million learners around the world.
According to their web site, Codecademy is “an
education company” and the goal is to make
Codecademy “the best place for our team to
learn, teach, and create the online learning
experience of the future” (About, n.d., para. 1).

Because, “education is broken” (About, n.d.,
para. 4), Codecademy considers itself a disruptive
force for “building the education the world needs
– the first truly net native education” (About,
n.d., para. 3). As the Codecademy web site
asserts, “come help us build the education the
world deserves” (About, n.d., para. 4).

The purpose of this paper is to describe the
author’s experience using Codecademy

Interactive Lessons as an instructional

supplement in an introductory Python
programming course. The paper provides a brief
background of the literature, a description of how
the author implemented the interactive lessons, a
discussion of the positives and negatives, an
evaluation of the extent in which the interactive

lessons meet the course skills outcomes, and
conclusions about the overall experience. The
focus of the paper centers on the implementation,
evaluation, and fulfillment of course skill
outcomes.

2. BACKGROUND

While there is a growing stream of research
related to online learning environments in general
(e.g., Herrington, Oliver & Reeves, 2003; Huang,
2002; Johnson & Aragon, 2002; Michinov,
Brunot, Le Bohec, Juhel, & Delaval, 2011; Oncu &
Cacir, 2011) and smart learning content (e.g.

Brusilovsky et al., 2014), studies specifically
focused on the use of Codeacademy as an
instructional supplement are lacking. The

www.manaraa.com

Information Systems Education Journal (ISEDJ) 17 (3)

ISSN: 1545-679X June 2019

©2019 ISCAP (Information Systems and Computing Academic Professionals) Page 21
https://isedj.org/; http://iscap.info

following are representative studies of the use of

Codecademy for teaching and learning.

Kim and Ko (2017) included Codecademy in their

study of online coding tutorials. They argue that
the research investigating online learning
environments for programming is both “sparse”
and “narrow” resulting in “little holistic guidance
about how to choose effective tutorials . . .” (p.
321). Based upon a set of curriculum design
dimensions the authors identified four

pedagogical principles to form the basis of the
study including: (1) connecting to learners’ prior
knowledge, (2) organizing declarative
knowledge, (3) practice and feedback, and (4)
encouraging meta-cognitive learning. From these
four guiding principles, the authors developed

nine groupings by which to analyze the data
collected. The nine groupings consisted of: (1)
personalization, (2) utilization, (3) contents, (4)
organization, (5) context, (6) actionability, (7)
feedback, (8) transfer learning, and (9) support.
Within these nine groupings, the authors derived
24 pedagogical principles specifically related to

coding tutorials. In all but one of the principles,
the authors marked them either yes or no. Across
the 23 pedagogical principles Codecademy
received 20 “yes” responses that it met the
criteria. The authors concluded that “most online
coding tutorials are still immature and do not yet
achieve many key principles in learning sciences”

(p. 325).

In a study exploring the design of online learning
environment for programming education Olsson
and Mozelius (2016) analyzed Codeacademy and
MyProgrammingLab by asking the following

question, “what are the most important factors in
the design of virtual learning environments for
self-learning of fundamental skills and
knowledge”? (p. 534). They suggested that both
“seem like promising additional tools for self-
learning in programming courses at the university
level” (p. 94). Using a case study research

method they collected data via interviews,
questionnaires, and group discussions. According
to the authors the student’s overall experience
with Codecademy was positive. The immediate

feedback, in particular, was cited by a students as
a major benefit. Other features of Codecademy
that students liked included the structure of the

lessons and the forum. In sum, the authors
identified the most important design factors as
follows: (1) usability and user-friendliness, (2)
clear and well-formulated feedback, (3)
gamification, (4) unambiguous exercises, (5) GUI
design and multi-modality, and (6) curriculum

alignment.

In an attempt to increase student engagement
and performance in a Fundamentals of Software

Development course teaching Python
programming, Fotaris, Mastoras, Leinfellner, and
Rosunally (2016) gamified the course using the
Kahoot! Classroom Response System, which is a
game-based learning and trivia platform, the
classroom version of the TV game show “Who
Wants To Be A Millionaire?”, and Codecademy’s

Python programming course. To implement the
gamification strategy the authors replaced the
traditional one-hour topical lectures with three
20-minute micro-lectures each followed by a
Kahoot! session in which students responded to
questions. The typical review session comprised

of question and answer time was replaced with
the “Who Wants To Be A Millionaire?” game
consisting of Python-related questions. Finally,
Codecademy’s Python programming course was
used for students to practice coding. For each of
these components points were awarded and a
leaderboard was provided in Blackboard. To

gather data the authors observed student
behavior, conducted an online survey, gathered
self-reported data from students, and
synthesized classroom administrative data such
as attendance, tardiness, use of material,
completion rates, and academic performance.
Results of the study indicated an overall positive

response from students to the gamified approach
to the course, completion rates of assignments

increased slightly, and overall student academic
performance increased by about 8%.

Lee and Ko (2015) included the Codecademy

Python course in a larger study designed to
examine whether novice programmers “produced
measurable learning outcomes” after using three
different online learning tools. In addition to the
Codecademy Python course, the tools included
were Gidget and Gidget Puzzle Designer. Each of
these tools represented a different form of online

learning environment which Lee and Ko identified
as tutorial, game, and canvas. Using a pretest-
posttest research design the authors
hypothesized that there would be “no difference

in learner’s post-test performance among the
conditions after completing their assigned
learning activity” (p. 238). Overall, the study

indicated that none of the online learning
environments resulted in statistically significant
differences in student performance. However,
there were statistically significant results in
student performance between Codecademy and
Gidget Puzzle Designer on the posttest, indicating

that structured tutorials may improve student

www.manaraa.com

Information Systems Education Journal (ISEDJ) 17 (3)

ISSN: 1545-679X June 2019

©2019 ISCAP (Information Systems and Computing Academic Professionals) Page 22
https://isedj.org/; http://iscap.info

knowledge over non-structured environments.

Figueroa and Amoloza (2015) incorporated three
online interactive platforms into a multimedia

course for non-computer science majors to study
the impact of these platforms on programming
anxiety and perceived learning. The platforms
included Blockly, Code.org, and Codecademy. In
this particular study, Codecademy’s JavaScript
programming course was used. Students were
administered the Programming Anxiety Survey,

consisting of six questions, before taking the
course and after taking the course. The analysis
of the survey data indicated a statistically
significant difference between the average scores
before and after taking the course. Furthermore,
data collected also indicated a positive result

among students in terms of perceived learning.
The authors conclude that the combination of the
three online interactive platforms resulted in “a
significant decrease in learning anxiety and an
increase in perceived learning among students
who took the course” (p. 65).

3. IMPLEMENTATION

Codecademy Teaching Resources
As a part of its educational strategy Codecademy
provides several teaching resources including
teacher training, class resources, and classroom
tracking. Teacher training allows instructors to go

through the same interactive lessons as the
students free of charge. Class Resources include

free lesson plans and quizzes. Classroom Tracking
allows the instructor to create student accounts
and to track individual performance by overview
and by unit. The tracking allows for the instructor

to see the percentage of each individual course
completed.

Course Requirements and Outcomes
While planning to teach Python programming for
the first time, the author decided to implement
the interactive Python lessons provided by

Codecademy. The idea of these free, online,
interactive lessons was appealing to the author as
an additional means to potentially engage
students beyond the traditional textbook

materials. He was curious to see how the
student’s would respond to the interactive nature
of the lessons and see if the students thought

they were a worthwhile activity in addition to the
customary quizzes, exams, and assignments.

The course itself was offered online in an 8-week
summer session via Blackboard Learn 9. A total
of thirty students were enrolled in the course. The

majority of students were either Computer
Information Systems or Information Technology

majors (25 out of 30). The course consisted of 26

men and 4 females.

Rather than offer the interactive lessons as an

optional supplement for which the students could
complete or not complete, the author decided to
require the interactive lessons as a part of the
course requirements constituting 10% of the
overall course grade. This decision was made to
motivate the students to complete the interactive
lessons. A breakdown of the course requirements

and percent of course grade is provided in Table
1. A list of the knowledge and skill outcomes is
provided in Appendix A.

Course Requirements %

Lab Assignments 35%

Codecademy Interactive Lessons 10%

Quizzes 10%

Exams (2) 30%

Final Exam 15%

Table 1. Breakdown of Course Requirements

Topics Covered
The textbook for the course was “Starting Out
with Python Programming” (Gaddis, 2018).
Because the course was taught in an 8-week
summer session the author covered the first six
chapters: (1) Introduction to Computers and

Programming, (2) Input, Processing, and Output,
(3) Decision Structures and Boolean Logic, (4)
Repetition Structures, (5) Functions, and (6) Files

and Exceptions. While the Codecademy Python
course consists of 21 individual courses covered
in 36 lessons the author selected those courses
which matched the content of the textbook

chapters: (1) Python Syntax, (2) Tip Calculator,
(3) Strings & Console Output, (5) Conditionals &
Control Flow, (7) Functions, and (14) Loops (See
Appendix B). Additional courses were available to
provide students an opportunity to apply the
concepts from the main courses. For each
textbook chapter the associated interactive

lessons were provided on the course schedule
(See Appendix C).

4. POSITIVES AND NEGATIVES

Positives

The author identified several positive aspects of
implementing the Python interactive lessons as
an instructional supplement. First, and perhaps
most obvious, the interactive lessons are free.
With the rising cost of traditional textbooks and
the additional expense of adding publisher’s
interactive content (e.g., MyProgrammingLab)

they provide an easily accessible, no-cost

www.manaraa.com

Information Systems Education Journal (ISEDJ) 17 (3)

ISSN: 1545-679X June 2019

©2019 ISCAP (Information Systems and Computing Academic Professionals) Page 23
https://isedj.org/; http://iscap.info

alternative which is quite attractive to both

instructors and students.

Second, the interactive lessons are self-paced

and students can repeat the individual courses as
many times as they wish. If the student is having
difficulty with a particular topic they can spend as
much time with it as needed. Additionally,
students can access the content at their
convenience and do not need to install special
software or have lab access. With Internet access

and a browser the student is good to go.

Third, because of the interactive nature of the
lessons student receive immediate feedback on
the code that they are writing. It is no surprise to
instructors that today’s students prefer hands-on

activity over reading a textbook or passively
listening to a lecture. The author found that the
feedback provided by the interactive lessons was
user-friendly and provided enough guidance to
scaffold the learning experience and help to solve
logical or syntactical errors.

Finally, from the author’s perspective, setting up
and managing a Codecademy course via the
Classroom Tracking interface was quite simple
and intuitive. Basically, the instructor chooses the
course they want to use and then can customize
its name and description to match the course
syllabus. The instructor then adds the students to

the course and a username and password is
automatically created for each student. Students

can be added, edited, and deleted at any time. An
easy-to-follow “Pupil Tracker Guide” is provided
by Codeacademy. The students can then login
and change these items if they choose. As

students complete individual courses the tracking
interface displays an overview of each student’s
progress as well as individual performance by
lesson. The author then entered the completion
percentage into the gradebook in Blackboard. The
performance matrix can also be downloaded as a
comma-separate values (.csv) file and opened

and edited in Excel.

Negatives
The implementation of the Python interactive

lessons was not without its negatives. As with any
interactive coding environment there is limited
opportunity for creativity by the students since

the “solutions” are predefined. The downside of
this approach is that students only see potentially
one way of solving a problem – they are not
allowed to think “outside of the box”. Another
possible downside is that they simply employ a
trial-and-error approach to problem solving until

they receive the correct answer rather than
enlisting critical thinking skills. As with any

instructional strategy students may simply rush

through the interactive lessons to get them
completed rather than taking their time to learn,
understand, and apply the content.

From the author’s perspective, there were
actually very few negatives from the standpoint
of creating and managing the Python course in
Codecademy. It would have been nice if the
students were automatically notified that their
accounts were created and what their username

and password was rather than the author having
to send an individual message to each student in
Blackboard. The fact that the author had to
manually enter the percent completed values
from the tracking system to the Blackboard
gradebook was also a bit time-consuming.

5. EVALUATION OF SKILL OUTCOMES

In addition to identifying the positives and
negatives, the author evaluated the use of
Codecademy as an instructional supplement in
terms of meeting the course skill outcomes (see

Appendix A).

SO1: Students will create Python programs
using the Python interpreter and the IDLE
IDE
Because the Python lessons are embedded within
the Codecademy online, interactive environment

a specific interpreter and/or IDE is not used. This
skill outcome was met outside of Codecademy

using the Python interpreter and IDLE IDE
provided on the Python website.

SO2: Students will apply the steps in the

program development process
The program development process followed was
that provided by Gaddis (2017): (1) Design the
program, (2) Write the code, (3) Correct syntax
errors, (4) Test the program, and (5) Correct logic
errors. This skill outcome is partially met using
the interactive lessons. The structure of the

majority of the interactive lessons is to provide
students with a prompt to write a single line of
code and provide immediate feedback or to
provide students with partial code for which they

complete. Students are not required to design
and write a program from start to finish. Some
may find this as a shortcoming of the interactive

lessons as they provide only partial snippets of
code to be completed, rather than working
through the full program development process.

SO3: Students will implement variables,
literals, and constants

The interactive lessons provide students the
opportunity to implement variables, literals, and

www.manaraa.com

Information Systems Education Journal (ISEDJ) 17 (3)

ISSN: 1545-679X June 2019

©2019 ISCAP (Information Systems and Computing Academic Professionals) Page 24
https://isedj.org/; http://iscap.info

constants. Students are required to declare

variables, literals, and constants and assign
appropriate values to them. These exercises are
provided in Lesson 2 - Python Syntax, Exercises

10-13; Lesson 3 - Tip Calculator, Exercises 1-5;
and Lesson 4-5 - Strings & Console Output,
Exercises 1-13.

SO4: Students will select appropriate
arithmetic, logical, and relational operators
The interactive lessons provide students the

opportunity to select appropriate arithmetic,
logical, and relational operators. These exercises
are provide in Lesson 2 - Python Syntax,
Exercises 10-13; Lesson 3 - Tip Calculator,
Exercises 1-5; Lesson 7 - Conditionals & Control
Flow, Exercises 1-10.

SO5: Students will implement sequence,
selection, and repetition control structures
The interactive lessons provide students the
opportunity to implement sequence, selection,
and repetition structures. These exercises are
provided in Lesson 2 - Python Syntax, Exercises

10-13; and Lesson 9 – Conditionals & Control
Flow, Exercises 11-15; Lesson 24-25 – Loops,
Exercises 1-19.

SO6: Students will analyze, design,
implement, test, and debug domain-specific
applications which demonstrate basic

computation, input/output, control
structures, operators, exception handling,

and functions
The interactive lessons partially provide students
the opportunity to analyze, design, implement,
test, and debug domain-specific applications

demonstrating basic computation, input/output,
control structures, operators, and functions.
Coverage of functions is provided in Lesson 11-
12 – Functions, Exercises 1-19. As noted in SO2,
the design of the interactive lessons lack the
ability for the students to create full programs
from scratch, instead providing partial code

snippets for completion.

In sum, the Codecademy interactive lessons met
three skill outcomes (SO3, SO4, and SO5),

partially met two skill outcomes (S02, S06) and
did not meet one skill outcome (S01). See Table
2 for a summary of the evaluation of the skill

outcomes as either met, partially met, or not met.

Outcome Met Partially Met Not Met

SO1 X

SO2 X

SO3 X

SO4 X

SO5 X

SO6 X

Table 2. Evaluation of Skill Outcomes

6. CONCLUSION

Overall, the author’s experience with the
Codecademy interactive lessons for Python was
positive in terms of an instructional supplement
to the textbook materials. The interactive lessons

provided adequate depth and breadth of the

Python syntax and allowed students additional
coding practice with immediate feedback in an
environment conducive to their own schedule and
learning speed. Additionally, the interactive
lessons met or partially met five of the six course
skill outcomes. Another upside being that the

students were afforded this opportunity with no
additional cost to the course. For those perhaps
interested in implementing one of the interactive
lessons the management is simple and intuitive
and is not a significant addition of time
commitment to the instructor. While anecdotal

comments might be made from the student’s
perspective at this point, a potential opportunity
for future research is to survey students on their
attitudes toward the benefits and challenges of

the interactive lessons and to correlate
completion percentages with overall course
grade.

7. REFERENCES

About. (n.d.) Retrieved from

https://www.codecademy.com/about

Brusilovsky, P., Edwards, S., Kumar, A., Malmi,

L., Benotti, L., Buck, D., . . . Wollowski, M.
(2014). Increasing adoption of smart learning
content for Computer Science education.
Proceedings of the Nineteenth Annual
Conference on Innovation and Technology in
Computer Science Education, 1-27.

Codecademy. (n.d.). In Wikipedia. Retrieved from

https://en.wikipedia.org/wiki/Codecademy

Figueroa, R. B., & Amoloza, E. M. (2015).

Addressing programming anxiety among
non-computer science distance learners: A

UPOU case study. International Journal for

www.manaraa.com

Information Systems Education Journal (ISEDJ) 17 (3)

ISSN: 1545-679X June 2019

©2019 ISCAP (Information Systems and Computing Academic Professionals) Page 25
https://isedj.org/; http://iscap.info

Educational Media and Technology, 9(1), 56-

67.

Fotaris, P., Mastoras, T., Leinfellner, R., &

Rosunally, Y. (2016). Climbing up the
leaderboard: An empirical study of applying
gamification techniques to a computer
programming class. The Electronic Journal of
e-Learning, 14(2), 94-110.

Gaddis, T. (2017). Starting Out with Python.

Pearson, Boston.

Herrington, J., Oliver, R., & Reeves, T. C. (2003).

Patterns of engagement in authentic online
learning environments. Australian Journal of
Educational Technology, 19(1), 59-71.

Huang, H. M. (2002). Toward constructivism for

adult learners in online learning
environments. British Journal of Educational
Technology, 33(1), 27-37.

Johnson, S. D., & Aragon, S. R. (2002). An

instructional strategy framework for online
learning environments. Proceedings of the
Academy for Human Resource Development,
1022-1029.

Kim, A. S., & Ko, A. J. (2017). A pedagogical
analysis of online coding tutorials.
Proceedings of SIGCSE, 321-326.

Lee, M. J., & Ko, A. J. (2015). Comparing the

effectiveness of online learning approaches
on CS1 learning outcomes. Proceedings of the
Eleventh International Computing Education
Research Conference, 237-246.

Michinov, N., Brunot, S., Le Bohec, O., Juhel, J.,
& Delaval, M. (2011). Procrastination,
participation, and performance in online
learning environments. Computers &
Education, 56(1), 243-252.

Oncu, S., & Cakir, H. (2011). Research in online
learning environments: Priorities and
methodologies. Computers & Education,
57(1), 1098-1108.

Olsson, M., & Mozelius, P. (2016). On design of

online learning environments for

programming education. Proceedings of the
European Conference on e-Learning, 533-
539.

www.manaraa.com

Information Systems Education Journal (ISEDJ) 17 (3)

ISSN: 1545-679X June 2019

©2019 ISCAP (Information Systems and Computing Academic Professionals) Page 26
https://isedj.org/; http://iscap.info

Appendix A - Knowledge and Skill Outcomes

Knowledge Outcomes:

 Students will become familiar with the Python interpreter and the IDLE Integrated

Development Environment (IDE)
 Students will describe the steps in the program development process
 Students will explain the characteristics of variables, literals, and constants and their

appropriate usage
 Students will distinguish between arithmetic, logical, and relational operators and their

appropriate usage
 Students will identify and describe sequence, selection, and repetition control structures

 Students will describe exception handling
 Students will understand the benefits of modularization and the use of functions

Skill Outcomes:

 Students will create Python programs using the Python interpreter and the IDLE IDE
 Students will apply the steps in the program development process

 Students will implement variables, literals, and constants
 Students will select appropriate arithmetic, logical, and relational operators
 Students will implement sequence, selection, and repetition control structures
 Students will analyze, design, implement, test, and debug domain-specific applications which

demonstrate basic computation, input/output, control structures, operators, exception
handling, and functions

www.manaraa.com

Information Systems Education Journal (ISEDJ) 17 (3)

ISSN: 1545-679X June 2019

©2019 ISCAP (Information Systems and Computing Academic Professionals) Page 27
https://isedj.org/; http://iscap.info

Appendix B - Overview of Codecademy Python Lessons Used*

Lesson Course Exercises Objectives

1 1. Python Syntax 1-9  Become familiar with Codecademy platform
 Understand why Python is used and recognize basic terminology including

‘variables’ and ‘Boolean’
 Understand and create whitespace and multi-line comments

2 1. Python Syntax 10-13  Perform mathematical operations using python syntax
 Create numbers using ‘modulo’
 Practice creating comments, variable and arithmetic operations

3 2. Tip Calculator 1-5  Plenary activity synthesizing lessons 1&2: Python syntax

 Create a ‘tip calculator’ using python syntax, variables and arithmetic
operations

4 3. Strings & Console Output 1-9  Explain what a string is and how to create one
 Create variables using indexing
 Implement lower(), upper() and str() string methods
 Compare when dot notation should be used

5 3. Strings & Console Output 10-13  Demonstrate how to print strings and variables including how to concatenate
 Explain how to convert a non-string into a string and why you would need to
 Demonstrate how to use the % operator

7 5. Conditionals & Control Flow 1-4  Understand what control flow is
 Recognize and practice using 6 comparators (==, !=, <=, >=, <, >)
 Explain what a comparator is

8 5. Conditionals & Control Flow 5-10  Recognize 3 types of Boolean operations (AND, OR, NOT)
 Demonstrate how to use Boolean operations to return ‘True’ or ‘False’ values

9 5. Conditionals & Control Flow 11-15  Recognize IF, ELSE and ELIF statements
 Create simple controlled flows using IF, ELIF and ELSE statements

 Practice creating control flow with conditionals and Boolean operations

11 7. Functions 1-11  Demonstrate and understand how to define a function with and without
parameters

 Demonstrate and understand how to call functions
 Demonstrate importing functions both specific and universal
 Practice creating functions

12 7. Functions 12-19  Demonstrate and understand what the max, min, abs and type functions do
 Practice making functions

24 14. Loops 1-8  Understand how a While/ Else loop functions
 Understand how to prevent an infinite loop

 Create while loops integrated with lists, inputs and mathematical operators

25 14. Loops 9-19  Plenary: Practice making loops using the correct syntax
 Understand how a For/ Else loop works
 Create a For/ Else loop

*Adapted from Codecademy Python Unit Overview

www.manaraa.com

Information Systems Education Journal (ISEDJ) 17 (3)

ISSN: 1545-679X June 2019

©2019 ISCAP (Information Systems and Computing Academic Professionals) Page 28
https://isedj.org/; http://iscap.info

Appendix C – Course Schedule

Date Tentative Schedule Assignment Due* Quizzes** Codecademy Lessons***

Week 1 Course Introduction

June 12-18 Chapter 1 - Introduction to Computers and
Programming

Week 2 Chapter 2 - Input, Processing, and Output Lab 01* Ch 00**

June 19-25

Week 3 Chapter 3 - Decision Structures and
Boolean Logic

Lab 02* Ch 02** Python Syntax & Tip Calculator

June 26-July 2 Strings & Console Output

Week 4 Exam 1 (Chapter 1-3) Lab 03* Ch 03** Conditionals & Control Flow

July 3-9

Week 5 Chapter 4 - Repetition Structures Exam 1****

July 10-16

Week 6 Chapter 5 - Functions Lab 04* Ch 04** Loops

July 17-23

Week 7 Exam 2 (Chapter 4-5) Lab 05* Ch 05** Functions

July 24-30

Week 8 Chapter 6 - Files and Exceptions Exam 2****

July 31-Aug 6

Week 9 Final Exam Lab 06* Ch 06**

Aug 7-13 Final Exam****

